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The integrated Hel lmann-Feynman theorem is used to derive a rigorous 
relation between the energy and the electron density in momentum space. 
Choosing the electron mass as a differential parameter,  we obtain a formula 
corresponding to the Wilson-Frost  formula in coordinate space. Analysing 
the mass-dependence of momentum density, we then show that the present 
formula is equivalent to one of the previous results deduced from the virial 
theorem. Use of the integral Hel lmann-Feynman theorem is also discussed. 
Several illustrative examples are given for the calculation of energy from 
momentum density. 
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1. Introduction 

In 1962, Wilson [1] showed that the electronic energy of a molecular system 
can be calculated from the electron density p(r) by the use of the Hel lmann-  
Feynman (H-F) theorem [2-5] with respect to nuclear charge Z (Wilson charging 
process). Frost [61 then introduced the average electron density function and 
simplified the Wilson's formalism. ]Epstein et al. [7] showed that the Wilson 
charging process (see also [8]) is an application of the integrated H - F  theorem, 
and gave detailed analysis in comparison with the integral H - F  theorem [9]. 
Wilson's idea has been also generalized to the case where nuclear motion is 
taken into account [10]. 

On the other hand, we have recently proposed a method of momentum density 
[11] which permits to clarify the origin of nuclear rearrangements (such as 
molecular geometries and chemical reactions) in terms of the concept in momen-  
tum (p-) space instead of the usual one in coordinate (r-) space. The approach 
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has been motivated by the fact that in quantum mechanics the position r and 
the momentum p of a particle are variables which can equally describe states 
of systems under the commutation condition [r, p] = i [12]. Applying the virial 
theorem to a uniform scaling process [13], we have derived three rigorous 
formulas for the total energy of a system using the momentum electron density 
p (p) as a basic physical quantity. It has been then suggested that the contraction 
and expansion of p(p) is an important concept which characterizes the nature 
of nuclear rearrangements in p-space. The method has been applied to the o- 
and ~r states of H~- system and the processes of the attractive and repulsive 
interactions have been analysed in detail based on the reorganization of p(p) 
[14]. 

The purpose of this paper is to show that a rigorous relation between the energy 
E and the momentum density p(p) can also be deduced from the H-Ftheorem. 
By the application of the H - F  theorem with respect to the electron mass m 
[15, 16], dE/dm is given as a function of kinetic energy T. Since T is simply 
related to p(p) in p-space [T=~dp(p2/2)O(p)], the integrated H - F  theorem 
then enables us to determine E from the knowledge of p(p). The resultant 
equation in p-space corresponds to the Wilson's equation in r-space. If the 
nuclear mass M, instead of the electron mass m, is taken as a parameter,  the 
present result is also applicable to the study of nuclear isotope effect. Moreover,  
analysis of the m-dependence  shows that m enters into wavefunctions just as a 
scale parameter.  Then, the present formula derived from the integrated H - F  
theorem is proved to be an alternative form of one of the previous results derived 
from the virial theorem. Application of the integral H - F  theorem is also discussed. 
This theoretical consideration is developed in the next section. Simple applica- 
tions of the present results are given in Sect. 3. 

2. Energy-Momentum Density Relations 

2. i. Integrated Hellmann-Feynman Theorem 

We consider a molecular system with N electrons whose electronic Hamiltonian, 
wavefunction, and energy are H, ~F, and E, respectively. Then the energy 
difference between two states ~(A1) and ~(A2) specified by a parameter  A 
embedded in H, '.It, and E is given by the integrated H - F  theorem [7] as 

AE~--E(A2)-E(A~) 

ff~ k2 = dA <~(A)I[OH(A)/aA ]I~I'(A)>, (1) 
1 

where ~(h)=qZ({rl};A) is assumed to be normalized and {ri} ( i = 1  . . . . .  N)  
denote position vectors of electrons. Atomic units are used throughout this 
paper. 
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If the electron mass m is taken as h, Eq. (1) becomes 

m 2 
2 / . 2  

C I = -  dm m -2 dr[(-1/2)(OZ/Or2)o(r', r; m)]r'=r, (2) 
1 

since only the kinetic energy operator  Top = - ( 2 m )  -~ ~i 02/Or~ depends on m in 
the Hamiltonian. Here,  o(r', r; m) [ - N [ . d r 2 .  �9 �9 drre~*(r', r2 . . . . .  rN; m) 
�9 (r, r2 . . . .  , rN; m)] is the first-order density matrix in r-space. If we use the 
p-representation,  Eq. (2) is rewritten as 

I? I A E = -  dram -2 dp(p2/2)O(p; m) 
1 

= - I  dp (pa/2l~(p), (3a) 

C ~(p) =- dm m-a0(p ;  m), (3b) 
1 

where p stands for the momentum vector of an electron and p--IPl.  O(P; m) 
[ - - N  I d p 2 . . ,  dpNl'I~(p, P2 . . . .  , pN; m)l 2] means momentum electron density, 
i.e. the diagonal element of the first-order density matrix in p-space. Since the 
kinetic energy operator  (pa/2) appearing in Eq. (3a) is angular-independent,  
Eq. (3) is further simplified by the use of the radial momentum density I(p) 
[ -  I dOp d4)~ p2 sin 0p P(P)] instead of the three-dimensional 0 (P). That  is 

I 2 A 
A17, = -  dp (p /2)I(p), (4a) 

I? I(p) -- dm m-2I(p; m). (4b) 
1 

Eqs. (3) and (4) are the desired results. In the above derivation, two properties 
of the kinetic energy operator  are fully utilized; (i) it is a multiplicative operator  
in p-space, (ii) it is the only m-dependent  expression in the Hamiltonian. 

Eqs. (3) and (4) show that we can rigorously relate the energy change AE with 
the momentum densities O(P) and I(p) by considering the fictitious process 
where electron mass varies from ml to mE. Specifically, m = 1 represents the 
normal electron and the integration from an appropriate ml to mE = 1 gives the 
energy of a system by E = AE +E(ml). Furthermore,  it is convenient to choose 
ml = 0, since E oc m and hence E ( 0 ) =  0 (see also [15]). We can thus calculate 
the energy itself from the momentum density by carrying out the integration of 
Eqs. (3b) and (4b) from m = 0 to 1. 

The present equation in p-space seems to correspond to Wilson's equation [1] 
in r-space. The two methods may be complementary in the sense that they 
connect energy with densities in the two different spaces. In the r-space, the 
energy-density formula is derived from the relation between the nuclear-electron 
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attraction potential (--ZA/]r--RA[) and the coordinate density p(r), while in the 
p-space, it is derived from the relation between the kinetic energy (p2/2) and 
the momentum density p(p). The new density function t3(p) corresponds to the 
average electron density p (r) = ~01 dZp ( r ; Z )  introduced by Frost [6]. When the 
two methods are applied to the molecular electron density obtained from LCAO 
wavefunctions, Wilson's formula requires the evaluation of integrals up to 
three-center type, whereas the present formula requires up to two-center type. 
This is a merit of the present equation. 

The present method can be also applied to the nuclear problem (see also [16]). 
For example, equations of the same form as Eqs. (3) and (4) are obtained by 
substituting H, q~, and E in the above formulation by (To~ c +E) ,  qb, and W for 
the nuclear motion in the Born-Oppenheimer approximation, and by taking the 
nuclear mass M as a parameter. In this case, AW [--= W(M2)-  W(M,)] implies 
the energy difference due to isotope effect. Therefore, the present method may 
provide an interesting way to investigate the relation between the isotopic energy 
change and the nuclear momentum density distribution. 

2.2. Approximate Momentum Density and Virial Theorem 

Though it is assumed in the preceding formalism that p(p) is known exactly, 
Eqs. (3) and (4) can be shown to be also valid for a kind of approximate 
momentum densities. 

Following Hurley, we consider an energy expression e (/z, m) = 
(',t~(m)]H(tx)[~(m)), distinguishing the parameters m in �9 and H. Then the H-F  
and integrated H-F  theorems hold if 0e (/z, m)/am = 0 [5, 7, 17]. The wavefunc- 
tion which satisfies this condition is called floating function and we investigate 
it here. Analysis of the explicit m-dependence of the wavefunction shows that 
m appears as 

�9 (m) = m3N/2~br({mri}; mR) (in r-space) (5) 

= m-3N/2op({m-lpi}; mR) (in p-space) 

where R =--{RA} denotes the space coordinates of nuclei and N is the number 
of electrons. It is clear then that m works as a scale factor in the wavefunction. 
The condition Oe(~, m)/Om = 0  is satisfied by scaled wavefunctions in which 
optimum scale factors are variationally determined. Consequently, scaled 
wavefunctions satisfy the H - F  theorem with respect to m and hence Eqs. (3) 
and (4) are valid for the resultant momentum densities. It is interesting that the 
scaled wavefunction is a floating wavefunction with respect to m. 

Keeping in mind that the scaled wavefunction satisfies the virial theorem [18], 
we next investigate a relationship between Eq. (3) and the Eqs. [11] derived 
from the virial theorem previously. 

From Eq. (5), we obtain a scaling relation for the momentum electron density, 

p(p; R, m)= m-3p(m-lp; mR, 1), (6) 
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where the nuclear conformation R is explicitly written as another parameter. 
Using this relation with ml = 0 and m2 = 1, we can rewrite Eq. (3a) as 

1 

E : - I o  dm I dp(pZ/2)p(P; mR, 1). (7a) 

If we consider a uniform scaling process of an arbitrary conformation R0, R = sRo, 
Eq. (7a) is further reduced to 

, f  
E = - ( l / s )  Io ds' dp (p2/2)p(p; s', 1), (7b) 

where the scale factor s varies from 0 (united atom limit) to oe (separated atoms 
limit). Eq. (7b) is identical with one of the three equations derived previously 
[11]. Namely, the integrated H-F  theorem with respect to m and the virial 
theorem for a uniform scaling process are equivalent. This is an expected result 
from the equality of the floating and scaled wavefunctions in the present case. 
In the special case of atoms, Eq. (7) is simplified to E = - I  dp (p2/2)O(p), which 
is nothing but the atomic virial theorem E = - T .  However, we note that O(P) 
and ~(p) (or I(p) and f(p))  are different even for atoms. 

2.3. Integral Hellmann-Feynman Theorem 

We here briefly discuss an application of the integral H - F  theorem [5, 7, 9] to 
the E-p(p) problem. From the integral H - F  theorem, 

AE = (~(h 1)[[H(A2)- H(A 1)]l~(hu))/(~(h 1)]~(A2)), (8) 

we obtain 

= - f  dp (pZ/Z)~z(p), (9a) bE 

file(P) =-- (m ~ 1 - m J 1 )pl2(p ) / S12, (9b) 

by setting A = m and using the p-representation, p12(P) [ ~ N  ~ dp2"'" dpN" 
~*(P, P2 . . . . .  PN; ml)q~(P, P2 . . . . .  PN; m2)] is the transition density and $12 
[~(q~(ml)[q~(m2))] the transition overlap between the states q~(ml) and q~(m2). 
Eq. (9) enables us to obtain b E  from the knowledge of the transition density 
O12(P). Application to the nuclear isotope effect is straightforward. Simplification 
by the use of the radial transition density I12(p) [ ~  dOp dcbpp 2 sin Op Plz(P)] is 
also possible. 

When compared with the result of the integrated H-F  theorem (Eq. (3)), Eq. 
(9) is more simple in that the latter does not include integration about m. 
However, the required quantity is the transition density pa2(p) and not the 
density p(p) itself. The result of the integral H-F  theorem therefore deviates 
from our purpose to connect U and p(p) in a quantitative manner. In this sense, 
Eq. (9) seems to be a new formula which does not reduce to the results of the 
virial and integrated H - F  theorems. 
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For approximate transition densities, Eq. (9) is valid only when parent wavefunc- 
tions are superftoating [5, 7, 19]. The condition of superfloating is more restrictive 
than that of floating, and the scaled wavefunction is not superfloating with respect 
to the parameter m. It may be, however, possible to construct a superfloating 
wavefunction by the linear variation using ~(rn~) and ~(m2) as a basis set 
[5, 7, 19]. 

3. Illustrative Examples 

In this section, the energy-momentum density relations are exemplified for 
several cases. First, the electronic energy of atoms and molecules is discussed 
based on both the exact and approximate momentum densities. Secondly, the 
vibrational energy of diatomic molecules is examined as an example of nuclear 
isotope effect. All the momentum densities are derived from the Dirac-Fourier 
transform [12] of the corresponding r-space wavefunctions. 

3.1. Electronic Energy 

3.1.1. Atomic Case 

Since Eq. (7) for atoms reduces to the ordinary virial theorem, we here show 
applications of Eq. (4). Let us consider a ground-state hydrogen-like atom with 
nuclear charge Z. We first deal with the exact momentum density. The p-space 
wavefunction corresponding to ls(r;  m ) = ( m 3 Z 3 / r r ) ~ / 2 e x p ( - m Z r )  is given 
by [20] 

ls (p;  m) = (23/2/Tr)(mZ)5/Z{p 2 + (mg)2} -2, (10a) 

and hence the radial momentum density by 

I (p ; m)  = (25 / Tr)(mZ)Sp2{p 2 + (mZ)2} -4. (10b) 

Then Eq. (4b) yields 

I ( p )  = (23/Tr)Zp2[{p2/3 + (mlZ)Z}{p  2 -q- ( m l Z ) 2 }  -3  

- { p 2 / 3  + (m2Z)2}{p 2 + (mzZ)2}-3], (1 la) 

and Eq. (4a) results in 

A E  --- - ( Z 2 / 2 ) ( m 2 -  rnl). (1 lb) 

By setting ml = 0 and me = 1, we obtain the correct energy of the hydrogen-like 
atom, - (Z2/2) .  Since the exact wavefunction satisfies the integral H-F  theorem, 
Eq. (9) also provides the correct energy. In this case, the radial transition densities 
I12(p) and/~12(p) are given by 

I12(p) = (25/~r)(mlm2)5/2Z5p2{p 2 + (rnlZ)2}-2{p 2 + ( m 2 Z ) 2 }  -2,  " (12a) 

L2(p )  = (2z/  ~')(mz - ma)(ml H- mz)3ZSpZ{p 2 + (mlZ)2}-2{p  2 + (m2Z)2} -2. 

(12b) 
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Next, we consider the case of approximate momentum density using a one-term 
Gaussian function lsapp(r; m) = (2am2/~r) 3/4 exp (-am2r2). The corresponding 
momentum wavefunction and radial density are found to be 

lSapp(p; m) = (27rolm2) -3/4 exp (-p2/4arn2), (13a) 

/app(p  ; m) = (2/~ro13)l/2m-3p 2 exp (-p2/2c~rnZ), (13b) 

and then Eq. (4) results in 

Lpp(p ) = (2/ r )~/2[(m22 + 2a /p  2) exp (-p2 /2e~m2 ) 

- ( m [  z + 2~/p z) exp (-p2/2o~mZl )], (14a) 

AU,pp = - (3 /2 ) a  (me-  ml). (14b) 

The result for AE~pp is different from that obtained by the calculation of energy 
expectations; 

AErapp = {3c~/2 -2(2~/ r r ) l /ZZ}(m2-  ml). (15) 

However, if we adopt the variationally-determined optimum a, O~opt = 8Z2/97r, 
the two expressions coincide; 

AE,pp = AE'pp = -(4zZ/3rr)(m2- ml). (16) 

This exemplifies that proper scaling is necessary in order that the present method 
holds for approximate momentum densities. On the other hand, this wavefunction 
is not superfloating even for ~ = ~opt. Thus Eq. (9) results in 

[XZ.app (P) = 2-1('rroz 3)-1/2(m2 - ml) 

• (m~ + mZ)3/Z(mlmz)-4p 2 exp (--pZ/4olm~ 2 2 --p /4c~m2), (17a) 
tt ~ 2 A/~app -3~mlm2(rnt + m~)- l (m2-  ml), (17b) 

and gives incorrect answer for m~ = 0 and m2 = 1. 

3.1.2. Molecular Case 

We now consider an application of Eq. (7) to the ground 1SO'g state of H~- system. 
In the Finkelstein-Horowitz approximation [21], the r-space wavefunction of 
the system is given by 

~(r)  = (2 + 2S)-l/2{lsa(r) + lSB (r)}, (18a) 

lsn(r)  = (~3/'tT)1/2 exp (--fir--RA[), (18b) 

where S is the overlap integral and RA the position of nucleus A. The exponent 
= ( (R)  is optimized at every internuclear distance R [==-[RA-RBI] and this 

guarantees the validity of the basic equation of the present approach. The p-space 
wavefunction corresponding to Eq. (18) is [14, 22] 

�9 (p) = (2 + 2S)-I/2{lSA(p) + lsB(p)}, (19a) 

l sa(p)  = exp ( - ip .  I~A)IS(p), (19b) 



646 T. Koga and M. Morita 

where ls(p)  is given by Eq. (10a). We then have the radial momentum density 

I(p) = {2S~r-l(s(1 + S)-a}p2(p 2 + (2)-4{1 + (sin pR )/pR }. (20) 

For diatomic systems, 
internuclear distance R. Therefore, Eq. (7b) is rewritten as 

=-I dp (p2/2)](p), E 

R 

f (p)  = ( l / R )  [ dR'I(p; R'). 
a0 

the uniform scaling factor s can be replaced by the 

(21a) 

(21b) 

Since the R-dependence of (opt(R)  is not simple, the integration in Eq. (21) has 
been numerically carried out using the Gauss formula. In Fig. 1, the resultant 
f (p)  is depicted for several R together with the original I(p). In the R-range 
examined, I(p) and I(p)  show gradual migration of momentum density from 
large p-region to small p-region. (Note that I~ dpI(p)=~o dpI(p)=N.) This 
is contraction of momentum density. Correspondingly, T and - E  monotonously 
decrease as R increases. The proposed guiding principle of contraction and 
expansion for the behaviour of momentum density [11] is also valid in the present 
case. The electronic energies obtained from Eq. (21a) are summarized in Table 
1. The results agree with those of the direct calculation. In Table 1, an energy 
decomposition is also given which results from the partitioning of I(p) into one- 
and two-center parts. Of the two components, the contribution of the one-center 
part becomes large as R increases. This is mainly due to the enlargement of the 
space of electron movement which causes a decrease in the kinetic pressure of 
the two-center part. The two-center part is also the predominant origin of the 
contraction observed in Fig. 1. 
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Fig. 1. Radial momentum densities I(p) and f(p) for the lso-~ state of H~ system 
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Table 1. Ground-state electronic energy of H~- system based on the Finkelstein- 
, �9 a Horow~tz wavefunctxon 

647 

-E/a.u. 

R/a.u. Eq. (21) 
Direct 

One-center Two -center Total calculation 

0.5 0.92872 ( 5 4 )  0.80304 (46) 1.73176 1.73176 
1 0.84456 ( 5 9 )  0.59644 (41) 1.44100 1.44100 
2 0.71956 (66) 0.36695 (34) 1.08651 1.08651 
3 0.64231 (72) 0.25547 (28) 0.89778 0.89778 
4 0,59511 (76) 0.19222 (24) 0.78733 0.78733 
5 0,56666 (79) 0.15255 (21) 0.71921 0.71921 

a Values in parentheses mean percent ratios. 

3.2. Vibrational Energy 

As a simple example of the energy change accompanied by nuclear isotope 
substitution, we may consider the vibrational energy of diatomic molecules based 
on the momen tu m  density. 

Under  appropriate  approximation,  the problem of diatomic vibration is reduced 
to the problem of a one-dimensional  harmonic oscillator, whose ground-state 
wavefunction and energy are (see e.g. [23]) 

c~(x) = (~k/ r 1/8 exp [-(btk )l/Zx2/2], (22a) 

W = (k/lx)I/2/2. (22b) 

Here ,  X = - R - R e ,  ~[=--MAMB/(MA+MB)] is the reduced mass, and k 
[=--(d2E/dRZ)R=Re] the force constant. Note  that though Eq. (22a) has the same 
form as the approximate  wavefunction ls,vv employed in Sect. 3.1.1. its mass- 
dependence is different. After  evaluating the m o m e n t u m  wavefunction and 
density, which are similar to Eq. (13), we finally obtain 

I? tJ(P) = dp./x-2p (P; ~)  
1 

= 2~-~/2k]Pl-S{'y(5/2, [ k ~ ]  ~/2p2)_ ~/(5/2, [k~2]-~/ZP2)}, (23a) 
+ o 0  

A W = - f  dp(p2/2)~(P) 
o o  

= [(k/~z) 1/2- (k/lx1)l/2]/2, (23b) 

where y(a,  x) is the incomplete gamma function. Eq. (23b) correctly predicts 
the energy change of isotopic substitution, in accordance with the direct use of 
Eq. (22b). Since Woc# -1/2, we can also calculate W itself f rom Eq. (23) by 
choosing/zl  = oo and ~2 =/_t. 
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4. Summary 

Based on the in tegra ted  H - F  theorem,  we have discussed a me thod  which 

r igorously connects  the energy  and  the m o m e n t u m  elec t ron density.  Tak ing  the 
e lec t ron mass as a pa ramete r ,  we have der ived an ene rgy -dens i t y  formula  in 

p - space  which cor responds  to the W i l s o n - F r o s t  fo rmula  in r-space.  It  has been  

shown that  the scaled wavefunc t ion  is a floating funct ion  with respect  to the 
p a r a m e t e r  m, and  that  the p resen t  result  of the e n e r g y - m o m e n t u m  densi ty  
equa t ion  is equ iva len t  to one  of the previous  results ob t a ined  f rom the virial 

theorem.  App l i ca t ion  of the integral  H - F  theo rem has also been  examined.  

Several  examples  have been  given which i l lustrate the use of m o m e n t u m  densi ty  

for the calculat ion and  in te rp re ta t ion  of energy.  
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